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bstract
A mathematical model is presented for a lithium ion cell under galvanostatic discharge. The non-homogeneous material balance equation for
he solution phase of a lithium cell was solved analytically using Green’s function. We determined the elementary solutions, the norms and the
igen values of the problems for galvanostatic boundary conditions and systematically tabulate the resulting expressions. The solution has been
btained in a closed form expression.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The use of mathematical modeling in the design of battery
ystems has a long history. Macroscopic models of the current
nd potential distribution in porous battery electrodes were first
eveloped in the late 1950s [1,2]. Major strides towards under-
tanding the behaviour of porous electrodes were made in the
arly sixties with the development of porous electrode theory
3] which generalized earlier modeling efforts into a macro-
omogeneous modeling framework that is still used in most
resent day models. In the early seventies, the scope of battery
odeling increased from treating a single electrode to modeling

he full-cell sandwich including two electrodes and the separa-
or by numerical computation [4,5]. This modeling approach
llowed the treatment of complicated interactions between a
ide variety of phenomena that had previously been studied

eparately under limiting conditions.
The earliest model for lithium-ion processes in the compos-
te insertion electrode was developed in the 1980s [6–8]. The
odel covers only a single porous electrode. It does not have

he advantages of a full-cell sandwich model for the treatment
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f complex interacting phenomena between the cell layers and
tility for design purposes. Doyle et al. [9,10] have developed a
ery general one-dimensional model applicable to almost any of
he existing Li/Li+ systems. Their model uses the porous electro
heory developed by Newman [5] to describe the potential varia-
ions in the solid and solution phases. The material balance in the
olution phase is described using the concentrated solution the-
ry and in the solid phase using a Fickian diffusion equation in
pherical coordinates. Confining only to thermal conditions, the
uthors validated their model by demonstrating good agreement
ith experimental data. Later, this model has been extended to

nclude an energy balance in order to predict cell temperature
11–13]. The problems encountered with Li-ion systems like
oor rate capability, thermal runaway, occurrence of undesired
ide reactions and capacity fade have been addressed in 2002
sing the new model [14].

Numerical techniques such as the finite element method and
nite difference method allow results of a high accuracy but

hey demand extensive computing time. Analytical solutions
re the best if available due to the solutions being continu-
us in the independent variables and show explicitly how the
arameters of the system are involved. The solutions give much

nsight into a system, which is one of the primary objectives
f modeling. Unfortunately, analytical solutions are not avail-
ble for most of cases of interest. It is specific to the system,
eometry and boundary conditions. Usually, analytical solu-
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Nomenclature

a specific interfacial area (m2 m−3)
c dimensionless concentration
ci concentration of species i (mol m−3)
Di,eff effective coefficient diffusion of species i

(m2 s−1)
F Faraday’s constant (996,487 C cq−1)
I superficial current density (A m−2)
jn pore-wall flux of lithium ion (mol m−2 s−1)
J dimensionless flux
L thickness of the cell (m)
Lc thickness of the cathode (m)
Ls thickness of the separator (m)
Ni molar flux of species i (mol m−2 s−1)
r dimensionless thickness of the cell/separator
t time (s)
ti transference number of species i
x distance from the separator/positive electrode

boundary (m)
y dimensionless distance along x-axis
zi charge per mole

Greek letters
ε porosity of electrode
λn eigen value
τ dimensionless time
Ψ dimensionless concentration (for homogeneous

equation)

Subscripts
I 1, 2, . . .
n 0, 1, 2, . . .
eff effective
+ positive electrode
Li lithium
c cathode
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Ni = −εDi,eff∇ci +
ziF

(2)

where I is the electrical current density and ziF is the charge
per mole. The term Di,eff is the effective diffusion coefficient of
s separator or solid phase

ions are restricted to linear equations with linear boundary
onditions. In 1979, Atlung et al. [6] solved the diffusion equa-
ion for solid solution cathodes with zero initial concentration
sing Laplace transformation technique. In 1997, Doyle and
ewman [10] solved a similar model for the discharge lithium
atteries under steady-state condition using the method of sep-
ration of variables. In 2001, Subramaniam and White [15]
sed an extended method of separation of variables for different
lectrode geometries with galvanostatic boundary conditions at
ero initial concentration. This was followed by the work of
ashim et al. [16,17] who solved the material balance equa-

ion in lithium-ion batteries with non-zero initial concentration

y using Laplace transform. In 2004, Johan and Arof [18,19]
resented analytical solutions for lithium intercalation in dif-
erent cathode geometries using integral transform technique.
ecently, Liu [20] presented an analytical result of the intercala-
er Sources 170 (2007) 490–494 491

ion process of Li/Li+ into a spherical particle of graphite/cobalt
xide immersed in a conductive electrolyte using finite integral
ransform method. In his work, Liu applied pseudo-steady-state
ondition in order to guarantee a uniform convergence of the
olution.

The objective of this paper is to demonstrate a method
f Green’s function in solving material balance equation in
olution phase of electrochemical system. The Green’s func-
ion approach is a powerful technique for finding solutions
o linear, homogeneous and non-homogeneous partial differ-
ntial equations [21–27]. To our best knowledge, Green’s
unction approach has not been used for the lithium battery
ystems.

. Specific capacity of lithium ion cell

In this work, a model has been developed for a galvanos-
atic discharge behaviour of a Li/LiMn2O4 as shown in Fig. 1.
uring the discharge process, lithium ions de-intercalate from

he anode diffuse through the separator and intercalate into the
athode. For this work, the cathode is closely packed electrode
mploying a LiMn2O4 active material. For one-dimensional
ransport of lithium ions in a porous composite cathode with
ctive materials, the material balance equation for species i an be
ritten as

∂(εci)

∂t
= −∇Ni + ajn(1 − ti) (1)

here ε is the porosity and is considered to be constant, ci the
oncentration of the species i, Ni the species flux, a the species
nterfacial area, jn the pore wall flux across the electrolyte active
aterial interface and ti is the transference number of species i.
rom the concentrated solution theory [5], the series flux is

tiI
Fig. 1. Schematic representation of lithium-ion battery.
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Hence, non-homogeneous Green’s function given as:

′ ′ 1 2 ∞∑ (
λn(1 + r − y

)
−λ2

n(t′−τ)
92 M.R. Johan, A.K. Arof / Journal o

pecies i defined by Di,eff = Diε
3/2 [17], where Di is the diffusion

oefficient of species i in the electrolyte. Substituting Eq. (2) into
q. (1) gives

∂cLi

∂t
= −∇(−εDi,eff∇ci) − ∇

(
Iti

ziF

)
+ ajn(1 − ti) (3)

ince i is a lithium ion species, then ti = tLi = t+ = 0.2 [10]. We
an further simplify Eq. (3) as

∂cLi

∂t
= ε1/2DLi

∂2cLi

∂x2 + ajn(0.8)

ε
(4)

The distribution of reaction rate in the porous electrode is
complex process. It reflects the solution-phase concentration

ariations as well as the trade-off between ohmic and kinetic
esistances. When using an insertion material having an open
ircuit potential that depends strongly on the state of charge of
he system, a uniform current distribution results [28]. Other than
hat, a uniform current distribution can be expected when kinetic
esistances dominate ohmic resistances [5]. According to [10],
or a uniform current distribution, it is possible to assume that
he pore wall flux across the electrolyte–intercalation material
nterface is given by its average value at any point in the porous
lectrode. Hence

n = − I

aFLc
(5)

here Lc is the thickness of the cathode and I is the discharge
urrent. Introducing the dimensionless parameters

= cLi

cLi,O
, y = x

Ls
, r = L

Ls
, τ = DLit

L2
s

(6)

Substituting Eq. (6) into Eq. (4) gives

∂c

∂τ
= ε1/2 ∂

2c

∂y2 + J, τ > 0, 1 ≤ y ≤ 1 + r (7a)

Subjected to the boundary and initial conditions

∂c

∂y
= 0, τ > 0, 1 ≤ y ≤ 1 + r (7b)

∂c

∂y
= Jr

ε1/2 , τ > 0, y = 1 (7c)

(y, 0) = 1 (7d)

here dimensionless flux is

= a(0.8)L2
s j

εDcLi,O
(8)

We solved Eq. (7) by using Green function. The homogeneous
ersion of Eqs. (7a)–(7d) are:

∂2ψ

∂y2 = 1

ε1/2

∂ψ

∂τ
, τ > 0, 1 ≤ y ≤ 1 + r (9a)
subject to the boundary and initial conditions

∂ψ

∂y
= 0, τ >, y = 1 + r (9b)

G

er Sources 170 (2007) 490–494

∂ψ

∂y
= 0, τ > 0, y = 1 (9c)

(y, 0) = F (y) = 1 (9d)

The solution for the homogeneous Eqs. (9a)–(9d) is

(y, τ) =
∞∑
n=0

AnX(λn, y) e−λ2
nτ (10)

here the unknown constant given as

n = 1

N(λn)

∫ 1+r

1
X(λn, y

′)F (y′) dy′ (11)

nd the norm is

(λn) =
∫ 1+r

1
[X(λn, y

′]2 dy (12)

Hence, Eq. (10) becomes

(y, τ) =
∞∑
n=0

e−λ2
nτ

N(λn)
X(λn, y)

∫ 1+r

1
X(λn, y

′)F (y′) dy′ (13)

Rearrange Eq. (13)

(y, τ) =
∫ 1+r

1

[ ∞∑
n=0

e−λ2
nτ

N(λn)
X(λn, y)X(λn, y

′)

]
F (y′) dy′

(14)

here eigen functions given as

(λn, y) = cos

(
λn(1 + r − y)

ε1/4

)
(15a)

(λ0, y) = 1 (15b)

and the norms are

(λn) = r

2
(16a)

(λ0) = r (16b)

From Eq. (14), we an determine for the homogeneous Green’s
unction as

(y, τ|y′, 0) = 1

r
+ 2

r

∞∑
n=1

cos

(
λn(1 + r − y

ε1/4

)
e−λ2

nτ

× cos

(
λn(1 + r − y′ )

(17)
(y, τ|y , t ) =
r

+
r
n=1

cos
ε1/4 e

× cos

(
λn(1 + r − y′

ε1/4

)
(18)
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The general solution for Eq. (7) is

(y, t) =
∫ 1+r

1
G(y, τ|y′, 0)F (y′)

+ Jrε1/2
∫ t′

0
dτ

∫ 1+r

1
G(y, τ|y′, t) dy′

+ ε1/2Jr

∫ t′

0
dτ

∫ 1+r

1
G(y, τ|y′, t)y′=1 (19)

Substituting Green’s functions Eqs. (17) and (18) into Eq.
19) and perform the integration, finally we obtain

(y, τ) = 1 + Jrτε1/2 + Jτε1/2 + Jr

2

(
y2 − r2 + r − 1

3r

)

− 2Jε1/2
∞∑
n=1

1

λ2
n

cos

(
λnr

ε1/4

)

× cos

(
λn(1 + r − y′)

ε1/4

)
e−λ2

nτ (20)

here λn = nπ/r. The term in the summation is only significant
or n = 1.

. Results and discussion

The profile of the concentration of lithium ion during a gal-
anostatic discharge in the solution phase of the cathode is
lotted in Fig. 2 using Eq. (20). Fig. 2 shows that the lithium
on concentration is minimum at the back of the cathode, that is
t y = 1 + r. This is reasonable because during full charge, it is
xpected that the lithium ion concentration in the cathode will
e almost zero. During discharge, the lithium ion will fill up the
ack portion of the cathode last. The result displayed in Fig. 1
hows a similar trend to that obtained by Doyle and Newman
10], Hashim et al. [16,17] and Subramaniam and White [15]
s shown in Fig. 3. The intersection point of Fig. 2 occurs near

= 3 while in the graph displayed in reference [10] show inter-
ection at y = 2 and in Ref. [15] show intersection at y = 1.5.
his is due to the effect of taking the boundary condition at the
eparator/cathode interface as Jr/ε1/3 while Doyle and Newman

ig. 2. Concentration profile in solution phase across cathode during galvanos-
atic discharge as a function of applied current at a particular time (τ = 1).

fl
s
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c
t
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c
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ig. 3. Concentration profiles in solution phase across cathode compared with
ublished results.

ave assumed a steady-state situation when plotting this graph.
he result displayed in Refs. [16,17] show a similar intersection
oint (y = 3) with ours.

. Conclusion

This paper presents the analytical solution for the concentra-
ion profile of lithium ion in the solution phase of the positive
lectrode of a lithium ion cell. The model is justified for solu-
ion phase diffusion limitations in the discharge systems. The
ifferential and algebraic equations that describe the concen-
ration, potential and current density in the solution phase of
he porous electrode are in general nonlinear and coupled [9].
o find an analytical solution we must first decouple these
quations by assuming a form for the reaction rate distribu-
ion through the porous electrode. We made an assumption that
n is a constant at any point in the porous electrode. The con-
entration profiles will be determined using the boundary and
nitial conditions. The method Green’s function presented here
s useful for solving boundary value problems that include the
ux boundary conditions. This method yields an unambiguous,
traightforward way to obtain analytical solutions for lithium
on diffusion. In solving for the concentration profile, the initial
oncentration is taken to be c0 instead of a zero initial condi-
ion as used by both Carslaw and Jaeger [27] and Atlung et
l. [6]. The method applied can be easily extended to spheri-
al and cylindrical coordinates for concentration profile in solid
hase. The method appears to be more general, systematic
nd straightforward and should be useful for solving the sim-
lar problems. However, a more detailed mathematical model
s generally required for the final optimization of the battery
esign.
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